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NATURAL CONVECTION IN CLOSED CYLINDERS
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Abstract—Use is made of the Malkus—Veronis power integral technique to predict heat-transfer rates in
fluids contained in vertical right cylinders heated on a horizontal bottom and cooled on a horizontal top end.
Results are obtained for cells with either thermally insulating or conducting sidewalls. Closed-form relations
are given for Nusselt number in terms of Rayleigh number based on cell height and on an “adjusted wave-
number” which depends on height-to-diameter ratio for circular cylinders and height-to-side ratios for
square cylinders. Comparisons between the predictions and previously reported data are shown.

NOMENCLATURE

horizontal wavenumber ;

fluid cross-sectional area;

wall cross-sectional area;

vertical wavenumber;

specific heat at constant pressure;
cell diameter;

function of x and y;

function of x and y;

gravitational acceleration ;
function of z;

side of a square or width of a slot;
z-mode number ;

thermal conductivity;

wall conductivity;

cell height;

horizontal mode number;

highest z-mode of convection initiated ;
horizontal mode number;

power integral coefficient, equation (23);

Nusselt number (K ,,/K);
heat flux;
heat rate per cell;
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&, Rayleigh number (agBL'/xv);
t, time; ,
7, temperature;
T', temperature disturbance;
T, top cold temperature;
T, bottom hot temperature;
v, velocity vector;
w,  z-velocity component;
w',  disturbance in w;
x, horizontal coordinate ;
Vs horizontal coordinate;
z, vertical coordinate.
Greek symbols
o,  volume thermal expansion coefficient;
B,  temperature gradient in negative z-
direction
0,  dimensionless temperature;
K, thermal diffusivity;
v, kinematic viscosity;
n, 3.1415...;
p,  fluid density;
Q, dimensionless z-velocity.

INTRODUCTION

ANALYTICAL prediction of heat transfer through

a fluid contained between infinite parallel
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horizontal plates heated from below has been
made by Malkus and Veronis [1] using an
integral technique applied by Stuart [2] to
the mathematically analogous problem of pre-
dicting momentum transfer through a fluid
between two closely-spaced, concentric. rotating
cylinders. Stuart treated the contribution of the
first mode of convection, and Malkusand Veronis
calculated contributions by the first five modes
of convection.

The phrase “mode of convection” was ex-
plained by Stuart as follows in regard to laminar
channel flow: *. . . the occurrence of instability
in a flow may lead to the replacement of the
original laminar flow by a new laminar flow,
which consists of a mean flow with a super-
imposed finite disturbance. The flow may be
expected to persist for a certain range of
Reynolds number above the critical value and
then to become unstable at some Reynolds
number against a new (second) type of dis-
turbance. A new equilibrium flow, consisting
of a mean flow with two superimposed modes
of disturbance, is then conceivable for a range
of Reynolds number above the second critical
value. As the Reynolds number is raised stiil
further, additional modes of disturbance may
appear successively until, at a sufficiently large
Reynolds number, the flow is so highly dis-
turbed as to be considered turbulent.” Stuart
went on to point out that this word picture
would apply as well to natural convection
between horizontal plates, when the ‘“‘original
laminar flow™ is still fluid and *“Reynolds
number” is replaced by Rayleigh number.
The critical Rayleigh number at which a new
mode of convection initiates was taken by
Malkus and Veronis from the linear stability
theory results of Pellew and Southwell [3].

Nakagawa [4] attempted to use power
integrals as outlined by Malkus and Veronis
and by Stuart. To do so, he considered an
infinite horizontal layer of liquid with two
rigid boundaries, one rigid and one free, and
two free boundaries. He obtained expressions
for the amplitudes of the disturbances for the

first mode and then a general expression for
the Nusselt number which corresponds with
that of Malkus and Veronis, as it should. In
calculating the power integral coefficient, he
obtained the correct results for the free surfaces
case, N; = 2, but obtained an erroneous result
S0 per cent low for the rigid surface case. No
comparison with experiment was made. Hol-
lands [5] recomputed the values of N, for the
first two modes. His results agreed within 10 per
cent of those of Malkus and Veronis and
compared well with experiment. Catton [6]
computed N, for the first ten modes and used
the N, to calculate the heat transfer for 103 <
R < 107. He found excellent agreement with
Silveston’s [7] experimental data for infinite
horizontal surfaces.

The presence of lateral walls between the
horizontal plates raises the Rayleigh number
at which a mode of convection initiates, if the
walls constrict the convectivedisturbance [ 8-10].
As a first approximation, it might be expected
that the results of Malkus and Veronis could
be applied to this constricted convection, mak-
ing allowance for the change in critical Rayleigh
numbers. For this reason, the Malkus—Veronis
power integral technique is examined for appli-
cation to natural convection inside walled
cells. Such a procedure will result in relations
containing no free parameters to be empirically
determined by fitting experiments. Such em-
pirical correlations, often quite useful, will not
be considered in what follows. The theoretical
results to be obtained will be compared with
the experimental measurements reported pre-
viously [11].

HEAT-TRANSFER ANALYSIS

Fundamentals

It is desired to estimate the natural convection
heat transfer upward through a fluid inside a
right cylinder, not necessarily circular in cross-
section. The lower end wall is heated to maintain
it at temperature T, and the top end is cooled
to temperature T.. Two types of sidewalls are
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considered, one a good conductor, so that
the wall temperature is linear in the upward
direction despite heat exchange with the fluid
in the cylinder, and the other is a poor con-
ductor and radiator so that negligible heat is
exchanged between the fluid and sidewall.
In both cases, radiation exchange within the
fluid and other heat sources or sinks within
the fluid are neglected.

For a given cylindrical cell and fluid, if the
temperature difference T, — T, is sufficient,
natural convection will occur, warm light
fluid rising in some regions and cold heavy
fluid falling in other regions under the influence
of a downward-directed gravitational-body-
force field. As a result of the fluid motion,
warm fluid will be carried to the vicinity of the
cold end wall and cold fluid to the vicinity of
the hot end wall, thus increasing thermal
conduction at these walls.

The Malkus power integral technique can
be adopted to estimate the heat transfer in
cells heated from below. It utilizes an integral
expression derived from the equation of con-
servation of energy. Into this expression are
substituted approximate velocity and tem-
perature profiles for the most unstable convec-
tive disturbances, which are derived from a
linear perturbation analysis of the equations
of motion.

At any position in the fluid or sidewall, the
upward heat flux is composed of a conduction
term and a convective one

oT
_KEZ—

The average upward heat rate Q for the entire
cell volume, including the wall and neglecting
property variation, is

0 = @A, + <A, = ALK B
+ ABy + ApC Ty, (2)

where the bar denotes a horizontal average,
the caret () denotes a vertical average, B
denotes —dT/dz, A, is the cross-sectional

+ pCwT. (1)
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wall area, and A, is the fluid cross-sectional
area. We restrict the temperature profiles to
be horizontally symmetrical (odd) in such a
way that no fluid volume element A;dz has a
net transfer of heat with a wall volume element
A, dz. This restriction is consistent with the
profiles of the most unstable disturbances [12].
With this restriction, the horizontal average

upward heat flux in the fluid is a constant
q=KB +pCwT = <g) G3)

and the volume average heat flux can be
separated out of equation (2)
(@) = K(BY + pCpwT). )

The temperature profiles to be used are
likewise restricted to be vertically symmetrical
(odd) so that

L -T
L b

B = ()

where L is the height of the cell. Equations (4)
and (5) may be combined to form a Nusselt
number

gL _
KT,-T)

wT)

N = wCBy’

(6)

where « is the thermal diffusivity K/pC,,

Velocity and temperature profiles

Equation (6) is not useful by itself, because
a velocity and a temperature profile must be
chosen and the amplitudes determined. The
profiles will be taken to be those obtained from
a linear perturbation analysis of the thermal
stability problem. This approximation is some-
times called the shape assumption [2]. It is
the properties of these profiles that permit
WT)/k{B> in equation (6) to be expressed
simply as a sum of terms containing only
ratios of volume averages and ratios of Rayleigh
numbers so that the amplitudes of the velocity
and temperature profiles will not enter directly.

With no loss in generality, the temperature
can be expressed as a sum of a z-dependent
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term and a temperature perturbation

T(x,y,z) = T(z) + T'(x,y, 2). (7
Since conservation of fluid requires
w =0, (8)
there holds
wT =wT. 9)

Solutions to the linearized conservation equa-
tions, mass, momentum and energy can be
found when either horizontal harmonicity
(L/d - 0) or vertical harmonicity (L/d - o)
could be taken. In either case, the velocity is
expressed according to

w=w = ;Z Y fomalX Y)gudz).  (10)
When vertical harmonicity is assumed and
boundary conditions w = 0 at z = + L/2 were
taken, g,{z) is given by a simple harmonic
function in phase with w,, e.g. for odd k

W= ; 23 fem.n(x, )] cos (knz/L),

T = ;[Z Y. Fi m.n(X, y)] cos (knz/L).

It follows from this relationship between w,
and T that

Ty = 3 AT, (11
Equation (11) remains valid when horizontal
harmonicity is employed in place of vertical
harmonicity, by virtue of the harmonicity in
the horizontal plane.

In applying the integral technique, it is
necessary to fix arbitrarily upon a definite
profile for the velocity and temperature dis-
turbances,

A9 =2 fiomalX ¥),
Fk(x’ y) = Z Z Fk,m,n(xa y)

For this purpose, the one existing at the onset
of convection is chosen, that is, the one prevail-

ing at the lowest value of Rayleigh number
A, at which the kth mode of convection initiates.

The Malkus power integral

Equation (6) must be expressed in terms of
ratios of velocities and temperatures. To ac-
complish this transformation, the complete
energy equation and the properties of the
arbitrarily selected profiles are used. The energy
equation is written in terms of T" for steady
flow by introduction of Equation (7) and
d/dt = 0. Multiplied by T, and integrated
over the cell volume it gives

k(TVN?*T> = — (PwTp) +{Tw . VT

+ K<T',;—6E> (12)
0z

In this integral energy equation, temperature
profiles will be taken in the form mentioned

T =) Ti;
B= <B> +Zk:Bk-

Subtraction of equation (4) from (3) and intro-
duction of equations (11, 13, 14) yields a relation
required by conservation of energy

kX Be= 2 AT = wiTw)-

(13)

(14)

(15)
Differentiation of equation (3) likewise yields

B 1o — 1N 60—

k

(16)

Equations (12) and (15) are satisfied by taking
them to hold term by term. The triple-product
term in equation (12) disappears by virtue of
the harmonicity in either the horizontal or
vertical directions. Equation (12) becomes

KTV Ty = — BOwTey — wT?c?
+ W, Tt (17)
This relation may be divided by {(w, T} and the

result written to express (w,T}) in the desired
terms of ratios,
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(T V* T
W T - B> wi T (18)
BT T
wTi?

Dimensionless profiles are introduced by
scaling all lengths to L and taking Q and 0 as
follows:

3
L=1, @=CZw, 6,=25T,  (9)
K Ky
equation (18} becomes
PERCALN,
wi T _f_ ¥ 1 <lek> (20)
B T @R |
Q8?

where # is the Rayleigh number.

The profiles to be introduced in the volume
integrals are those given by the linearized
perturbation equations, ie. the shape assump-
tion is employed. The linearized energy equation
indicates

-wk<Ek>= KV2Ty;
“ngk = V29k.

This relation permits equation (18) to be
written in a convenient form

21

<:2§;> =N, (1 - %),ge >R (22
where
1
M= s *)
&Qb>?

Equations (11) and (12) can now be introduced
into equation (6) to obtain the useful result.

M
§ Ry
Nu=1+ —_—
u 1 Nk[l ],

k=1
where M is the highest mode of convection
initiated for a given Rayleigh number,

Ry <R < Ry=y+1

(24)

25

Values of R, N, and Nu

Values of &, can be determined for very
low L/d as was done by Pellew and Southwell
{3] or for very high L/d as was done by Yih [9].
At intermediate values it is possible to estimate
the effects of horizontal shear on the top and
bottom ends by adding a correction to the
vertical wavenumber b, used in the free surface
expression [13]. When this correction is made
the resulting formalism for estimating %, results.

1. For a particular horizontal cross-section
obtain the horizontal wavenumber, g, in the
manner of Ostrach and Pnueli [10] by solving

o*w | d*w 5

subject to
w = 0 on the lateral walls (27)
and
fwdd4,=0. (28)
Ar
There results for a square cylinder
_ /)L
=g (29)
and for a circular cylinder of diameter d
7-66L

2. Account for wall conduction by taking an
adjusted wavenumber a,,

a, = 0-75a 31
for adiabatic sidewalls or,
ap=a (32)

for perfectly conducting sidewalls.

3. Account for the fact that the cellular
convection is not much influenced by lateral
walls at low L/d by taking

a; = ag + (bi/2). (33)

4. Account for horizontal shear on the ends
by taking for closed celis

by = kn +0-85. (34)
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5. Find an approximate value of 4%, from the
relation

2 + b2 3

R, = (ai . i) .

ay

(35)

Equations (33) and (35) written in the form
shown are correct in the limit as L/d approaches
infinity, for in this case b, goes to zero leaving
Rayleigh number equal to ai. In the limit as
L/d approaches zero they are likewise correct,
for in this case the convection cells break loose
from the sidewalls and assume a size such that
a? is b?/2. The formalism shown gives a useful
procedure for intermediate cases, as will be
shown by comparison of predictions with
experimental results.

Values of N; are determined from equation
(23) using the Q, and 6, determined by Catton
[13]. Table 1 shows results for L/d = 0. At
high values of horizontal wavenumber a the
effects of the ends become small with the result
that the vertical variations approach cos (knz/L)
for odd k or sin (knz/L) for k even. In this case
N, = 2. As an approximation it is suggested
that the values of N,(a) in Table 1 can be used

for any L/d when the approximate value of g;
determined as above is used.

Calculations of Nusselt number vs. Rayleigh
number for a circular cylinder with various
L/d values and for adiabatic or perfectly con-
ducting sidewalls were made using the values
of &, and N, obtained. Figures 1 and 2 show
the results. Experimental data taken from
[11] are shown for comparison. Agreement
within approximately 10 per cent is seen to exist.

DISCUSSION

An analysis based upon an integral technique
presents difficulties when it is desired to assess

40

20— Adjusted wovenumber solution
=575L/0

Nu

OExperimental data

Nusselt number,

|
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K

F1G. 1. Heat transfer in a cylinder with adiabatic walls.

TE 807

Rayleigh number{

Table 1. Power integral coefficient for infinite horizontal surfaces

Wave 1 2 3 4 6 7 8 9 10
number

1000 1435 1651 1745 1805 1850 14886 1918 1946 1974 2000

3116 1446 1655 1749 1808 1851 1887 1918 1947 1975 2000

5365 1475 1664 1755 1812 1854 1889 1920 1948 1976 2000

7582 1517 1676 1762 1817 1858 1892 1922 1949 1977  2:000

9801 1564 14691 1769 1§22 1861 1895 1924 1951 1979  2:000
12020 1609 1707 1777 1827 1865 1898 1927 1953 1981  2:000
14241 1649 1724 1786 1832 1869 1901 1929 1956 1983  2:000
16465 1682 1741 1794 1838 1873 1904 1932 1958 1985  2:000
18689 1711 1757 1803 1843 1877 1907 1934 1960 1988  2:000
21003 1737 1773 1813 1849 1881 1910 1937 1963 1990  2:000
23238 1758 1787 1822 1855 188 1914 1940 1965 1993  2:000
26000 1780  1.803 1832 1862 1891 1918 1943 1968 1997  2:000
30000 1806 1823 1847 1873 1898 1924 1948 1973  2:000  2:000
34000 1826 1840 1860 1882 1906 1930 1954 1978 2000  2:000
38000 1843 1855 14871 1892 1914 1936 1959 1983 2000  2:000
42000 1857 1867 1882 1900 1921 1942 1965 1989  2:000  2:000
46000 1869 1878 1891 1908 1928 1948 1970 1994  2:000  2-000
50000 1879 1887 1899 1916 1934 1954 1975 1998 2000  2:000
54000 1888 1895 1907 1922 1940 1959 1980 2000  2:000
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Adjusted wave number solution

- 7664 L/0

> 0l

o| /0500,

Nusseit number, Au
1717

@ Experimental dato
0> 15— 20— 2%

] 111 | S N S o
804 2 2 2
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Royleigh number(‘g%%lﬁi
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|°3 F4

FiG. 2. Heat transfer in a cylinder with perfectly conducting
walls.

the probable accuracy. Final assessment must
be based upon experimental results. An observa-
tion that can be made is that the results here
are exact in the vicinity of %, when the exact
value #, and the accompanying velocity and
temperature profiles are used. Thus the pre-
dictions have not only the correct value of
Nu (unity) at # = £, but also the correct
slope at #7.

If &, is correct, if the slope of Nu vs. #
correct in the vicinity of #,, and if the Nu vs. #
relationship for L/d = 0 is nearly correct, then
it is unlikely that Nu(#, L/d) could be greatly
in error, for the L/d = 0 curve is essentially an
asymptote for a finite L/d curve in the limit of
large Rayleigh number.

The 4, computed are always based on a
linear temperature gradient and recent attempts
by Willis and Deardorf [14] to measure the
A, have shown poor agreement with Catton
[6]. Somerscales [15], however, has recently
collected a large number of data and attempted
to obtain the transition points. He found no
agreement among the values of &, indicated
by data of the various investigators. Conflicts
existed even between sets of data taken by a
single investigator. It appears that an extremely
careful investigation must be made to discover
true values of &, for values of k larger than
unity.

No attempt is made here to answer questions
raised by Malkus and Veronis as to why a
linearized analysis should yield nearly correct

values of heat transfer for the case L/d =0,
but agreement between data and the Malkus-
Veronis power integral theory is within 10 per
cent [6] when the values of N, and &, computed
as shown here are used in the prediction. This
agreement then virtually guarantees reasonable
agreement for all L/d as explained above.

Implicit in the method of analysis is an
assumption that Prandtl number is not small.
Use of the derived relations for Prandt] ap-
preciably less than unity would not be warranted
without further study.

It must be remembered in respect to practical
application that, if the sidewalls are good
conductors, the heat transfer through the walls
may amount to as much or more than the
transfer through the fluid; in this case the
thermal resistance in the bond between the
sidewalls and end plates may have a significant
effect. In other circumstances, the walls may be
poor conductors, but the fluid may be a gas
transparent to infrared radiation so that ele-
ments of the sidewall have a net radiative heat
flux which is transferred to the fluid. Such
walls may behave more nearly like perfectly
conducting walls than like adiabatic walls.
Such effects have been neglected in the present
treatment.

SUMMARY

Equation (24) gives Nusselt number vs.
Rayleigh number as a sum of terms having
critical Rayleigh numbers %, determined by
linear stability analysis and having power
integrals N,. Values of #, may be estimated
as shown by the procedure culminating in
equation (35), and values of N, have been
calculated and tabulated in Table 1.
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Résumé—On emploie Ia technique intégrale en puissances de Malkus-Veronis pour prédire les densités
de flux de chaleur dans des fluides contenus dans des cylindres droits verticaux chauffés sur leur fond
horizontal et refroidis sur leur sommet, Des résultats sont obtenus pour des cellules avec des parois
latérales soit isolées thermiquement soit conductrices. Des relations analytiques sont données pour le
nombre de Nusselt en fonction du nombre de Rayleigh basé sur la hauteur de la cellule et sur un “nombre
d’onde adapté” qui dépend du rapport hauteur sur diamétre pour les cylindres circulaires et des rapports
hauteur sur c6té pour les prismes & base carrée. Les prévisions sont comparées avec des résultats publiés
auparavant.

Zusammenfassung—Mit Hilfe der Malkus-Veronis Potenzintegraltechnik wurde der Wirmestrom in
senkrechten, fliissigkeitsgefiillten Zylindern berechnet, die am waagerechten unteren Ende beheizt und am
waagerechten oberen Ende gekiihlt sind. Die Ergebnisse wurden fiir Rohre mit adiabaten und leitenden
Winden erhalten. Die Ergebnisse werden in geschlossener Form angegeben fiir die Nusselt-Zahl als
Funktion der Rayleigh-Zahl, die mit der Rohrhhe und einer “angepassten Wellenzahl gebildet ist, die
vom Hohen- zum Durchmesserverhiltnis fitr Kreiszylinder und vom Hohen- zum Seitenverhiltnis fir
quadratische Zylinder abhingt. Ein Vergleich zwischen Berechnungen und kiirzlich verdffentlichten
Daten ist angegeben.

Aunoranna—nTerpanpnsit Metox Mankyca-Beponuca ncnonpsyercst A pacuera Temio-
ofMeHa MUAKOCTel B BEPTHHAJBHRIX NHUIMHAPAX, HATPEBAeMEIX CHHBY H OXJIGK[IAEMEIX
cBepxy. PesyssTaTH HOJYUeHH RIA Aueex mubo ¢ TeNJIOM30AMPOBAHHEMU, JHO ¢ NPOBOA-
AMMME GOKOBHIMH cTenxamMiu. IlpuBoguren sapucnMocTs 4ucesn Hyccempra ot wmcen Penes,
HOCTPOGHHHX 110 BHICOTE HYEHKM M 10 «BOJHOBOMY YHCIY », KOTOPOEe 3aBMCUT OT OTHOMIEHHA
BEICOTEL K [MAMETPY [JIA KPYTJHX HMIMHAPOE ¥ OTHOLIEHWA BBICOTH K WIKpune GOKOBOI
CTEHKM IIA KBAAPATHEIX LHIMHAPOB. Pe3aynsTaThl pacyeToB CPABHUBAITCA € JAHHBIMM,
AMEJOUMMICA B JIATEpPaType.



