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Ah&act-Use is made of the Malkus-Veronis power integral technique to predict heat-transfer rates in 
fluids contained in vertical right cylinders heated on a horizontal bottom and cooled on a horizontal top end. 
Results are obtained for cells with either thermally insulating or conducting sidewalls. Closed-form relations 
are given for Nusselt number in terms of Rayleigh number based on cell height and on an “adjusted wave- 
number” which depends on height-to-diameter ratio for circular cylinders and height-to-side ratios for 

square cylinders. Comparisons between the predictions and previously reported data are shown. 

NOMENCLATURE 

horizontal wavenumber ; 
fluid cross-sectional area; 
wall cross-sectional area ; 
vertical waven~ber ; 
specific heat at constant pressure ; 
cell diameter ; 
function of x and y ; 
function of x and y ; 
gravitational acceleration ; 
function of z; 
side of a square or width of a slot; 
z-mode number ; 
thermal conductivity; 
wall conductivity ; 
cell height; 
horizontal mode number ; 
highest z-mode of convection initiated ; 
horizontal mode number ; 
power integral coehicient, equation (23) ; 
Nusselt number (KEsf/K) ; 
heat flux ; 
heat rate per cell ; 
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Ray leigh number (&X?/rcv) ; 
time ; t 

temperature ; 
tem~rature disturbance ; 
top cold tem~rature ; 

bottom hot temperature; 
velocity vector ; 
z-velocity component ; 
disturbance in w ; 
horizontal coordinate ; 
horizontal coordinate; 
vertical coordinate. 

Greek symbols 

% volume thermal expansion coefficient ; 

B> tem~rature gradient in negative z- 
direction ; 

8, dimensionless temperature ; 

& thermal diffusivity ; 

v, kinematic viscosity; 

n, 3.1415., . ; 

2, 
fluid density; 
dimensionless z-velocity. 

INTRODUCTION 
ANALYTICAL prediction of heat transfer through 
a fluid contained between infinite parallel 
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horizontal plates heated from below has been 
made by Malkus and Veronis [l] using an 
integral technique applied by Stuart [2] to 
the mathematically analogous problem of pre- 
dicting momentum transfer through a fluid 
between two closely-spaced, concentric. rotating 
cylinders. Stuart treated the contribution of the 
first modeofconvection, and Malkus and Veronis 
calculated contributions by the first five modes 
of convection. 

The phrase “mode of convection” was ex- 
plained by Stuart as follows in regard to laminar 
channel flow : “. . . the occurrence of instability 
in a flow may lead to the replacement of the 
original laminar flow by a new laminar flow, 
which consists of a mean flow with a super- 
imposed finite disturbance. The flow may be 
expected to persist for a certain range of 
Reynolds number above the critical value and 
then to become unstable at some Reynolds 
number against a new (second) type of dis- 
turbance. A new equilibrium flow, consisting 
of a mean flow with two superimposed modes 
of disturbance, is then conceivable for a range 
of Reynolds number above the second critical 
value. As the Reynolds number is raised still 
further, additional modes of disturbance may 
appear successively until, at a sufficiently large 
Reynolds number, the flow is so highly dis- 
turbed as to be considered turbulent.” Stuart 
went on to point out that this word picture 
would apply as well to natural convection 
between horizontal plates. when the “original 
laminar flow” is still fluid and “Reynolds 
number” is replaced by Rayleigh number. 
The critical Rayleigh number at which a new 
mode of convection initiates was taken by 
Malkus and Veronis from the linear stability 
theory results of Pellew and Southwell [3]. 

Nakagawa [4] attempted to use power 
integrals as outlined by Malkus and Veronis 
and by Stuart. To do so, he considered an 
infinite horizontal layer of liquid with two 
rigid boundaries, one rigid and one free, and 
two free boundaries. He obtained expressions 
for the amplitudes of the disturbances for the 

first mode and then a general expression for 
the Nusselt number which corresponds with 
that of Malkus and Veronis, as it should. In 
calculating the power integral coefficient, he 
obtained the correct results for the free surfaces 
case, N, = 2, but obtained an erroneous result 
50 per cent low for the rigid surface case. No 
comparison with experiment was made. Hol- 
lands [S] recomputed the values of Nk for the 
first two modes. His results agreed within 10 per 
cent of those of Malkus and Veronis and 
compared well with experiment. Catton [6] 
computed Nk for the first ten modes and used 
the Nk to calculate the heat transfer for lo3 < 
R < 10’. He found excellent agreement with 
Silveston’s [7] experimental data for infinite 
horizontal surfaces. 

The presence of lateral walls between the 
horizontal plates raises the Rayleigh number 
at which a mode of convection initiates, if the 
wallsconstrict theconvectivedisturbance[g-lo]. 
As a first approximation, it might be expected 
that the results of Malkus and Veronis could 
be applied to this constricted convection, mak- 
ing allowance for the change in critical Rayleigh 
numbers. For this reason, the Malkus-Veronis 
power integral technique is examined for appli- 
cation to natural convection inside walled 
cells. Such a procedure will result in relations 
containing no free parameters to be empirically 
determined by fitting experiments. Such em- 
pirical correlations, often quite useful, will not 
be considered in what follows. The theoretical 
results to be obtained will be compared with 
the experimental measurements reported pre- 
viously [ 111. 

HEAT-TRANSFER ANALYSIS 

Fundamentals 
It is desired to estimate the natural convection 

heat transfer upward through a fluid inside a 
right cylinder, not necessarily circular in cross- 
section. The lower end wall is heated to maintain 
it at temperature T,, and the top end is cooled 
to temperature T,. Two types of sidewalls are 
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considered, one a good conductor, so that 
the wall temperature is linear in the upward 
direction despite heat exchange with the fluid 
in the cylinder, and the other is a poor con- 
ductor and radiator so that negligible heat is 
exchanged between the fluid and sidewall. 
In both cases, radiation exchange within the 
fluid and other heat sources or sinks within 
the fluid are neglected. 

For a given cylindrical cell and fluid, if the 
temperature difference Th - T, is sufficient, 
natural convection will occur, warm light 
fluid rising in some regions and cold heavy 
fluid falling in other regions under the influence 
of a downward-directed gravitational-body- 
force field. As a result of the fluid motion, 
warm fluid will be carried to the vicinity of the 
cold end wall and cold fluid to the vicinity of 
the hot end wall, thus increasing thermal 
conduction at these walls. 

The Malkus power integral technique can 
be adopted to estimate the heat transfer in 
cells heated from below. It utilizes an integral 
expression derived from the equation of con- 
servation of energy. Into this expression are 
substituted approximate velocity and tem- 
perature profiles for the most unstable convec- 
tive disturbances, which are derived from a 
linear perturbation analysis of the equations 
of motion. 

At any position in the fluid or sidewall, the 
upward heat flux is composed of a conduction 
term and a convective one 

q = -Kg + pC,wT. 

The average upward heat rate 0 for the entire 
cell volume, including the wall and neglecting 
property variation, is 

+ A,@> + A,PC,<=), (2) 
where the bar denotes a horizontal average, 
the caret () denotes a vertical average, /I 
denotes -dT/dz, A, is the cross-sectional 

wall area, and A, is the fluid cross-sectional 
area. We restrict the temperature profiles to 
be horizontally symmetrical (odd) in such a 
way that no fluid volume element A, dz has a 
net transfer of heat with a wall volume element 
A,,, dz. This restriction is consistent with the 
profiles of the most unstable disturbances [12]. 
With this restriction, the horizontal average 
upward heat flux in the fluid is a constant 

;= Kj +&,n= (;) (3) 

and the volume average heat flux can be 
separated out of equation (2) 

(4) = K(p) + PC,(~). (4) 

The temperature profiles to be used are 
likewise restricted to be vertically symmetrical 
(odd) so that 

q--T, m = 7’ 

where L is the height of the cell. Equations (4) 
and (5) may be combined to form a Nusselt 
number 

Nu = ;iL 
WG - T) 

= 1 + g, (6) 

where JC is the thermal diffusivity K/PC,. 

Velocity and temperature projiles 
Equation (6) is not useful by itself, because 

a velocity and a temperature profile must be 
chosen and the amplitudes determined. The 
profiles will be taken to be those obtained from 
a linear perturbation analysis of the thermal 
stability problem. This approximation is some- 
times called the shape assumption [2]. It is 
the properties of these profiles that permit 
(n)/rc($) in equation (6) to be expressed 
simply as a sum of terms containing only 
ratios of volume averages and ratios of Rayleigh 
numbers so that the amplitudes of the velocity 
and temperature profiles will not enter directly. 

With no loss in generality, the temperature 
can be expressed as a sum of a zdependent 
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term and a temperature perturbation 

T(x, Y, z) = T(z) + T’(x, y, z). (7) 

Since conservation of fluid requires 

M? = 0, (8) 

there holds 

wT=wT’. (9) 

Solutions to the linearized conservation equa- 
tions, mass, momentum and energy can be 
found when either horizontal harmonicity 
(L/d -P 0) or vertical harmonicity (L/d -+ a~) 
could be taken. In either case, the velocity is 
expressed according to 

NJ = u” = T ; 7 AC, m,n(x, Y)8c(Z). (10) 

When vertical harmonicity is assumed and 
boundary conditions u’ = 0 at z = & L/2 were 
taken, gk(z) is given by a simple harmonic 
function in phase with wk, e.g. for odd k 

w = ; Cc C _A, m, AX, Y)ICOS W=/LL m n 

T’ = T [c 1 Fk, m,nk Y)I ~0s PWL). m ” 
It follOws from this relatiOnShip between u’k 
and T; that 

(wT’) = $ (a). (11) 

Equation (11) remains valid when horizontal 
harmonicity is employed in place of vertical 
harmonicity, by virtue of the harmonicity in 
the horizontal plane. 

In applying the integral 
necessary to fix arbitrarily 
profile for the velocity and 
turbances, 

technique, it is 
upon a definite 
temperature dis- 

_htxv Y) = c c fk,m,n(X, Y)> 

Fk(X, Y) = ; ;: Fk, m, n(X, Y). 
m n 

For this purpose, the one existing at the onset 
of convection is chosen, that is, the one prevail- 

ing at the lowest value of Rayleigh number 
&%k at which the kth mode of convection initiates. 

The Malkus power integral 

Equation (6) must be expressed in terms of 
ratios of velocities and temperatures. To ac- 
complish this transformation, the complete 
energy equation and the properties of the 
arbitrarily selected profiles are used. The energy 
equation is written in terms of 7” for steady 
flow by introduction of Equation (7) and 
d/dt = 0. Multiplied by T; and integrated 
over the cell volume it gives 

IC(T;VLT’) = - (p(m) + (T;v . VT’) 

+j( +!E! 
i ) kaz . (12) 

In this integral energy equation, temperature 
profiles will be taken in the form mentioned 

T’ = c T;; (13) 

8=&O +Ti% (14) 

Subtraction of equation (4) from (3) and intro- 
duction of equations (11, 13, 14) yields a relation 
required by conservation of energy 

Differentiation of equation (3) likewise yields 

- c f(n). (16) 
k 

Equations (12) and (15) are satisfied by taking 
them to hold term by term. The triple-product 
term in equation (12) disappears by virtue of 
the harmonicity in either the horizontal or 
vertical directions. Equation (12) becomes 

&T;v2) = - @)(WkT;) - (wkT;)2K-’ 

+ ((fl)2)K_i. (17) 

This relation may be divided by (WkT;) and the 
result written to express (a) in the desired 
terms of ratios, 
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Dimensionless profiles are introduced by 
scaling all lengths to L and taking B and 8 as 
follows : 

L= 1, n,=iwk, e,=$T;, (19) 

equation (18) becomes 

where W is the Rayleigh number. 
The profiles to be introduced in the volume 

integrals are those given by the linearized 
perturbation equations, i.e. the shape assump- 
tion is employed. The linearized energy equation 
indicates 

- w&B,> = #T;; 

- W@k = V2B,. (21) and for a circular cylinder of diameter d 

This relation permits equation (1X) to be 
written in a convenient form 

Gg+ 1 

dB> k ( ) -2 ,W>gljk, (22) 

where 

’ (23) 

Equations (11) and (12) can now be introduced 
into equation (6) to obtain the useful result. 

Nu=l +r+$], (24) 

k=l 

where M is the highest mode of convection 
initiated for a given Rayleigh number, 

Values off&f,, N,, and Nu 
Values of 2, can be determined for very 

low L/d as was done by Pellew and Southweli 
[3] or for very high L/d as was done by Yih [9]. 
At intermediate values it is possible to estimate 
the effects of horizontal shear on the top and 
bottom ends by adding a correction to the 
vertical wavenumber bk used in the free surface 
expression [13]. When this correction is made 
the resulting formalism for estimating C& results. 

1. For a particular horizontal cross-section 
obtain the hormonal waven~~r, a, in the 
manner of Ostrach and Pnueli [IO] by solving 

a2w a2w 
s +p= -a2w (25) 

subject to 
, 

and 
w = 0 on the lateral walls (27) 

fwdA,=O. 
Af 

(28) 

There results for a square cylinder 

766L 

a=d. 

2. Account for wall conduction by taking an 
adjusted wavenumber a,, 

a, = O-75a (31) 

for adiabatic sidewalls or, 

a, = a (32) 

for perfectly conducting sidewalls. 
3. Account for the fact that the cellular 

convection is not much influenced by lateral 
walls at low L/d by taking 

a.$ A ai + (bf/2). (33) 

4. Account for horizontal shear on the ends 
by taking for closed cells 

b, A kZ + 0.85. (34) 
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5. Find an approximate value of 9, from the for any L/d when the approximate value of ai 
relation determined as above is used. 

= (at + b,2)3 
Calculations of Nusselt number vs. Rayleigh 

4e 
k 

4 
(35) number for a circular cylinder with various 

L/d values and for adiabatic or perfectly con- 

Equations (33) and (35) written in the form ducting sidewalls were made using the values 

shown are correct in the limit as L/d approaches of W, and Nk obtained. Figures 1 and 2 show 

infinity, for in this case bk goes to zero kiVing the results. Experimental data taken from 

Rayleigh number equal to a:. In the limit as [l l] are shown for comparison. Agreement 

L/d approaches zero they are likewise correct, within approximately 10 per cent is seen to exist. 

for in this case the convection cells break loose 
from the sidewalls and assume a size such that DISCUSSION 

ui is b:/2. The formalism shown gives a useful An analysis based upon an integral technique 
procedure for intermediate cases, as will be presents difficulties when it is desired to assess 
shown by comparison of predictions with 40 
experimental results. 

Values of Ni are determined from equation s ” M,us+ed vavenumbcr Selutlo” 0=5~75‘/D 
(23) using the slk and ok determined by Catton 
[13]. Table 1 shows results for L/d = 0. At g ‘y 
high values of horizontal wavenumber a the g 
effects of the ends become small with the result Z 
that the vertical variations approach cos (km/L) z ’ 
for odd k or sin (knz/L) for k even. In this case “‘, 
NI, = 2. As an approximation it is suggested 

aExperime”tol doto 

g.Ar13 
Royleiqh number(~l 

that the values of N,(a) in Table 1 can be used FIG. I. Heat tr.an4cr in it c)lindct- with adlabatlc LUIIX 

Table 1. Power integral coefficient for infinite horizontal surfaces 

Wave 
number 1 2 3 4 5 6 7 8 

_______ 

1QOO 1.435 1.651 1.745 1.805 1.850 1.886 1.918 1.946 
3.116 1,446 1.655 1,749 1,808 1.851 1,887 1.918 1.947 
5.365 1.415 1.664 1,755 I.812 1.854 1.889 1.920 1.948 
7582 1.517 1.676 1.762 1.817 1.858 1.892 1.922 1,949 
9.801 1.564 1.691 1.169 1.822 1.861 1.895 1,924 1.951 

12.020 1,609 1.707 1.177 1.827 1.865 1.898 1.927 1.953 
14.241 1,649 1.724 1.786 1.832 1.869 1,901 1,929 1.956 
16.465 1.682 1.741 1.794 1.838 1.873 1.904 1.932 1,958 
18,689 1,711 1.757 1.803 1.843 1.877 1.907 1.934 1.960 
21,003 1.131 1.773 1.813 1.849 1.881 1.910 1,937 1.963 
23.238 1.758 1.787 1.822 1,855 1.886 1.914 I.940 1.965 
26@iO 1.780 1.803 1.832 1.862 1.891 1.918 1.943 1.968 
30+00 1.806 I.823 1,847 1,873 1.898 1.924 1.948 1,973 
34GOO 1.826 1.840 1.860 1.882 1,906 1.930 1.954 1,978 
38GOO 1,843 1.855 1.871 1.892 1,914 1.936 1.959 1,983 
42.000 1.857 1.867 1.882 1.900 1.921 1.942 1.965 1.989 
46QOo 1.869 1.878 1.891 I.908 1.928 1,948 1.970 1,994 
5oGOO 1.879 1,887 1.899 1.916 1.934 1.954 1.975 1.998 
54GoO 1.888 1.895 1.907 1.922 1.940 1.959 1.980 2-000 

_~ 

9 10 

..__ 

1.974 2.000 
1.975 2+Joo 
1.976 2GOo 
1.977 2000 
1.979 2GIo 
1.981 2+IOo 
1.983 2%xJo 
1,985 2Gxl 
1,988 2xoo 
1.990 2.000 
1.993 2QOo 
1.997 2.000 
2QOo 2.000 
2+x)0 2.000 
2.000 2,000 
2xlOo 2GQO 
2Goo 2GOo 
2,000 2QOo 
2.000 2.000 
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FIG. 2. Heat transfer in a cylinder with perfectly conducting 
walls. 

the probable accuracy. Final assessment must 
be based upon experimental results. An observa- 
tion that can be made is that the results here 
are exact in the vicinity of G%?~ when the exact 
value %!I and the accompanying velocity and 
temperature profiles are used. Thus the pre- 
dictions have not only the correct value of 
Nu (unity) at 92 = 43, but also the correct 
slope at 92:. 

If W1 is correct, if the slope of Nu vs. 4E 
correct in the vicinity of B,, and if the Nu vs. W 
relationship for L/d = 0 is nearly correct, then 
it is unlikely that Nu(B7, L/d) could be greatly 
in error, for the L/d = 0 curve is essentially an 
asymptote for a finite L/d curve in the limit of 
large Rayleigh number. 

The L& computed are always based on a 
linear temperature gradient and recent attempts 
by Willis and Deardorf [14] to measure the 
@* have shown poor agreement with Catton 
[6]. Somerscales [l!?jt however, has recently 
collected a large number of data and attempted 
to obtain the transition points. He found no 
agreement among the values of Wk indicated 
by data of the various investigators. Conflicts 
existed even between sets of data taken by a 
single investigator. It appears that an extremely 
careful investigation must be made to discover 
true values of Bk for values of k larger than 
unity. 

No attempt is made here to answer questions 
raised by Malkus and Veronis as to why a 
linearized analysis should yield nearly correct 

values of heat transfer for the case L/d = 0, 
but agreement between data and the Malkus- 
Veronis power integral theory is within 10 per 
cent [6] when the values of Nk and J& computed 
as shown here are used in the prediction. This 
agreement then virtually guarantees reasonable 
agreement for all L/d as explained above. 

Implicit in the method of analysis is an 
assumption that Prandtl number is not small. 
Use of the derived relations for Prandti ap- 
preciably less than unity would not be warranted 
without further study. 

It must be remembered in respect to practical 
application that, if the sidewalls are good 
conductors, the heat transfer through the walls 
may amount to as much or more than the 
transfer through the fluid; in this case the 
thermal resistance in the bond between the 
sidewalls and end plates may have a significant 
effect. In other circumstances, the walls may be 
poor conductors, but the fluid may be a gas 
transparent to infrared radiation so that ele- 
ments of the sidewall have a net radiative heat 
flux which is transferred to the fluid. Such 
walls may behave more nearly like perfectly 
conducting walls than like adiabatic walls. 
Such effects have been neglected in the present 
treatment. 

SUMMARY 

Equation (24) gives Nusselt number vs. 
Rayleigh number as a sum of terms having 
critical Rayleigh numbers gk determined by 
linear stability analysis and having power 
integrals iVb Values of Bk may be estimated 
as shown by the procedure culminating in 
equation (35), and values of Nk have been 
calculated and tabulated in Table 1. 
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R&m&--On emploie la technique int&grale en puissances de Malkus-Veronis pour pr&iire les densitCs 
de flux de chaleur dans des fluides contenus dans des cylindres droits verticaux chauffbs sur leur fond 
horizontal et refroidis sur leur sommet. Des rtsultats sont obtenus pour des cellules avec des parois 
lattrales soit isol&es thermiquement soit conductrices. Des relations analytiques sont don&es pour le 
nombre de Nusselt en fonction du nombre de Rayleigh bast sur la hauteur de la cellule et sur un “nombre 
d’onde adapt&” qui d&end du rapport hauteur sur diam&re pour les cylindres circulaires et des rapports 
hauteur sur ccit8 pour Ies prismes B base car&. Les p&visions sont compar&s avec des risultats publits 

auparavant. 

Zusammenfassung-Mit Hilfe der Malkus-Veronis Potenzintegraltechnik wurde der W&mestrom in 
senkrechten, flirssigkeitsgefiillten Zyliadem berechnet, die am waagerechten unteren Ende beheizt und am 
waagerechten oberen Ende gekiihlt sind. Die Ergebnisse wurden fiir Rohre mit adiabaten und leitenden 
W&den erhalten. Die Ergebnisse werden in geschlossener Form angegeben f& die Nusseit-Zahl als 
F~ktion der Rayle~-~1, die mit der Rohrh~he und einer “angepassten Weile~~’ gebildet ist, die 
vom H&en- mm Durchmesse~erh~l~is fii Kreiszylinder und vom H&hen- zum ~itenverh~~tnis fiir 
quadratische Zylinder abhtigt. Ein Vergleich zwischen Berechnungen und kiirzlich veriiffentlichten 

Daten ist angegeben. 

AHaoTa~~~-~HTerpanbHnP meTog ManHyca-BepoHHca ElcnonbsyeTcfi RnB pacueya Termo- 
Od%eHa ~~~KOCTe~ B BepT~~a~bH~X 4~~~H~paX, Harpesaerdatx c~113y M 0xnaHRaeMbix 
CBepXy. PeayJSbTaTM ~O~yqe~~ ~3% R’IeeK n~60 C Ten~O~3O~~pOBaH~~MU, a~60 C npOBO& 
RmMMYI 60KOBIsIMH CTeHKBMLI. r@iBOP;IITCR 3aBMGAMOCTb WfCeJI HyCGeJIbTa OT WCtLJI PeJIeK, 
IIOCTpOeHHbiX I-IO BbICOTe Wi&KM &I II0 4BOJIHOBOMy YllGJIJ'o, KOTOpOt? 33BRCklT OT OTHOIWHBR 

BbICOTbI K AYlaMeTpJ' JJJIH KpjWlbIX I.(HJIElHApOB M OTHOIUl?HEZR BbICOTbI K IUApllHe 60KOBOfi 
CTeHKW AJIII KBaAPaTHbIX ~EIJIMWQOB. Pe3yJIbTaTbI PWETOB CpaBH&fBalOTCH C AaHHblMK, 

MMWCI~HMMCR B nMTepaType. 


